## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Ethyl 2-anilino-4-(2,4-dichlorophenyl)-6-trifluoromethyl-3,4-dihydropyrimidine-5-carboxylate

#### Chen-Xia Yu, Song Lei, Chang-Sheng Yao\* and Shu-Jiang Tu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China Correspondence e-mail: chxiayu@xznu.edu.cn

Received 30 July 2007; accepted 1 August 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.092; data-to-parameter ratio = 14.9.

The title molecule,  $C_{20}H_{16}Cl_2F_3N_3O_2$ , was obtained by the reaction of 2,4-dichlorobenzaldehyde, 1-phenylguanidinium hydrogen carbonate and ethyl 4,4,4-trifluoro-3-oxobutanoate catalyzed by sulfamic acid in the solid state. In the molecular structure, the pyrimidine ring adopts a twist-boat conformation and the two benzene ring are nearly perpendicular. In the crystal structure, the crystal packing is stabilized by intermolecular hydrogen bonding.

#### **Related literature**

For related literature, see: Bloxham *et al.* (2006); Borchardt *et al.* (2005); Hermann *et al.* (2003); Radwan & El-Sherbiny (2007); Ulrich (2004).



#### **Experimental**

#### Crystal data

| V = 2055.4 (5) Å <sup>3</sup>     |
|-----------------------------------|
| Z = 4                             |
| Mo $K\alpha$ radiation            |
| $\mu = 0.37 \text{ mm}^{-1}$      |
| T = 294 (2) K                     |
| $0.26 \times 0.24 \times 0.20$ mm |
|                                   |

#### Data collection

| Bruker SMART CCD area-detector       |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Sheldrick, 1996)            |
| $T_{\min} = 0.911, T_{\max} = 0.931$ |
|                                      |

#### Refinement

R[

wÌ

*S* 41 28

21

| $F^2 > 2\sigma(F^2)$ ] = 0.037 | H atoms treated by a mixture of                            |
|--------------------------------|------------------------------------------------------------|
| $R(F^2) = 0.092$               | independent and constrained                                |
| = 1.04                         | refinement                                                 |
| 77 reflections                 | $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 1 parameters                   | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |
| restraints                     | Absolute structure: Flack (1983),                          |
|                                | with 2385 Friedel pairs                                    |
|                                | Flack parameter: $-0.06$ (6)                               |

11861 measured reflections

 $R_{\rm int} = 0.038$ 

4177 independent reflections 3175 reflections with  $I > 2\sigma(I)$ 

 $D \cdot \cdot \cdot A$ 

 $D - H \cdot \cdot \cdot A$ 

## Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$  D-H  $H\cdots A$ 

Symmetry code: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, -z$ .

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the Natural Science Foundation of Xuzhou Normal University (grant No. 06XLB07), the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of Jiangsu Province (grant No. 2006033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2273).

#### References

- Bloxham, J., Fyfe, M. C. T., Horswill, J., Jeevaratnam, R. P., Keily, J., Procter, M. J., Schofield, K. L., Shaaban, S., Swain, S. A. & Wong-Kai-In, P. (2006). WO Patent 2006 018 662.
- Borchardt, A., Gonzalez, J., Li, H., Linton, M. A. & Tatlock, J. H. (2005). US Patent 2005 176 701.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent 2003 176 284.
- Radwan, M. A. A. & El-Sherbiny, M. (2007). Bioorg. Med. Chem. 15, 1206– 1211.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Ulrich, H. (2004). US Patent 2004 033 897.

Acta Cryst. (2007). E63, o3804 [doi:10.1107/S1600536807037786]

#### Ethyl 2-anilino-4-(2,4-dichlorophenyl)-6-trifluoromethyl-3,4-dihydropyrimidine-5-carboxylate

### C.-X. Yu, S. Lei, C.-S. Yao and S.-J. Tu

#### Comment

The derivatives of pyrimidine are reported to have various biological activities, such as antitumor (Radwan & El-Sherbiny, 2007), CB1 cannabinoid receptor modulatory (Bloxham *et al.*, 2006) and hepatitis C virus RNA-dependent RNA polymerase inhibitory (Borchardt *et al.*, 2005). In addition, compounds that contain fluorine have special bioactivity, for example, flumioxazin is a widely used herbicide (Hermann *et al.*, 2003; Ulrich, 2004). This led us to pay attention to the synthesis and structure of these fluoro-compounds and have synthesized aseries of derivatives of dihydropyrimidines. Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between plane N1/N2/C8/C9 and phenyl plane C1—C6, is 87.90 (8)°, which shows the two planes are nearly perpendicular. The atoms C7 and C10 deviate from the plane N1/N2/C8/C9 by 0.574 (4)Å and 0.157 (4)Å in the same direction, which shows the pyrimiding ring adopts a twist boat conformation. The connection of the pyrimidine ring and phenyl ring C15—C20 can be described as the torsion angle of C15—N3—C8—N1, -173.7 (2)°. In the structure, the crystal packing is stabilized intermolecular hydrogen bonds: N3—H3A···O1, N1—H1A···O1 and intramolecular hydrogen bond: N1—H1A···C11 (Fig.2 & Table 2).

#### **Experimental**

The title compound was synthesized by by the reaction of 2,4-dichlorobenzaldehyde, 1-phenylguanidinium hydrogencarbonate and ethyl 4,4,4-trifluoro-3-oxobutanoate in 1:1:1 molar ratio in solid state catalyzed by sulfamic acid at 363 K. After cooling, the reaction mixture was washed with water and recrystallized from ethanol, which gave single crystals suitable for X-ray diffraction.

#### Refinement

The hydrogen atoms bonded to nitrogen atom was positioned from a Fourier difference map and were refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93, 0.96, 0.97 or 0.98 Å, and included in the final cycles of refinement using a riding model, with  $U_{iso}(H) = 1.2U_{eq}$  (parent atom).

#### **Figures**



Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atomnumbering scheme.



Fig. 2. The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

### Ethyl 2-anilino-4-(2,4-dichlorophenyl)-6-trifluoromethyl-3,4- dihydropyrimidine-5-carboxylate

| Crystal data                 |                                              |
|------------------------------|----------------------------------------------|
| $C_{20}H_{16}Cl_2F_3N_3O_2$  | $F_{000} = 936$                              |
| $M_r = 458.26$               | $D_{\rm x} = 1.481 {\rm ~Mg~m^{-3}}$         |
| Orthorhombic, $P2_12_12_1$   | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab       | Cell parameters from 4124 reflections        |
| a = 11.0085 (15)  Å          | $\theta = 2.2 - 25.1^{\circ}$                |
| <i>b</i> = 11.8934 (17) Å    | $\mu = 0.37 \text{ mm}^{-1}$                 |
| c = 15.698 (2) Å             | T = 294 (2) K                                |
| $V = 2055.4 (5) \text{ Å}^3$ | Block, colourless                            |
| Z = 4                        | $0.26\times0.24\times0.20~mm$                |
|                              |                                              |
| Data collection              |                                              |

| Bruker SMART CCD area-detector<br>diffractometer               | 4177 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3175 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.038$                  |
| T = 294(2)  K                                                  | $\theta_{\text{max}} = 26.4^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 2.2^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -7 \rightarrow 13$                |
| $T_{\min} = 0.911, \ T_{\max} = 0.931$                         | $k = -14 \rightarrow 14$               |
| 11861 measured reflections                                     | $l = -19 \rightarrow 19$               |
|                                                                |                                        |

### Refinement

| Refinement on $F^2$        | Hydrogen site location: inferred from neighbouring sites               |
|----------------------------|------------------------------------------------------------------------|
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |

| $R[F^2 > 2\sigma(F^2)] = 0.037$                                | $w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 0.3148P]$<br>where $P = (F_o^2 + 2F_c^2)/3$       |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.092$                                              | $(\Delta/\sigma)_{max} < 0.001$                                                           |
| <i>S</i> = 1.04                                                | $\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$                                       |
| 4177 reflections                                               | $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$                                    |
| 281 parameters                                                 | Extinction correction: SHELXL97,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| 2 restraints                                                   | Extinction coefficient: 0.0261 (15)                                                       |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983)                                                          |
| Secondary atom site location: difference Fourier map           | Flack parameter: -0.06 (6)                                                                |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x            | У            | Ζ             | $U_{iso}*/U_{eq}$ |
|-----|--------------|--------------|---------------|-------------------|
| Cl1 | 0.72705 (8)  | 0.14863 (7)  | -0.12933 (5)  | 0.0766 (3)        |
| Cl2 | 0.37002 (8)  | 0.42819 (9)  | -0.22290 (5)  | 0.0887 (3)        |
| F1  | 0.62596 (16) | 0.48924 (14) | 0.24705 (10)  | 0.0706 (5)        |
| F2  | 0.80585 (16) | 0.45551 (14) | 0.29272 (9)   | 0.0730 (5)        |
| F3  | 0.77062 (17) | 0.60034 (12) | 0.21670 (10)  | 0.0757 (5)        |
| 01  | 0.56257 (18) | 0.19540 (17) | 0.14384 (13)  | 0.0646 (5)        |
| O2  | 0.64809 (17) | 0.27081 (15) | 0.25945 (11)  | 0.0592 (5)        |
| N1  | 0.86238 (17) | 0.32244 (16) | 0.00923 (13)  | 0.0432 (5)        |
| N2  | 0.85306 (18) | 0.48302 (16) | 0.09472 (12)  | 0.0428 (5)        |
| N3  | 0.9898 (2)   | 0.47054 (18) | -0.01780 (15) | 0.0528 (5)        |
| C1  | 0.6315 (2)   | 0.2608 (2)   | -0.10509 (15) | 0.0456 (6)        |
| C2  | 0.5460 (2)   | 0.2923 (3)   | -0.16446 (15) | 0.0540 (7)        |
| H2  | 0.5375       | 0.2527       | -0.2152       | 0.065*            |
| C3  | 0.4732 (2)   | 0.3837 (2)   | -0.14692 (16) | 0.0525 (7)        |
| C4  | 0.4828 (2)   | 0.4401 (2)   | -0.07171 (17) | 0.0521 (7)        |
| H4  | 0.4322       | 0.5008       | -0.0601       | 0.063*            |
| C5  | 0.5684 (2)   | 0.4060 (2)   | -0.01277 (16) | 0.0461 (6)        |
| H5  | 0.5744       | 0.4446       | 0.0386        | 0.055*            |
| C6  | 0.6455 (2)   | 0.31641 (18) | -0.02757 (14) | 0.0381 (5)        |
| C7  | 0.7429 (2)   | 0.28239 (17) | 0.03625 (14)  | 0.0393 (5)        |
| H7  | 0.7453       | 0.2001       | 0.0388        | 0.047*            |
|     |              |              |               |                   |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C8   | 0.89924 (19) | 0.42730 (19) | 0.03061 (16)  | 0.0408 (6)  |
|------|--------------|--------------|---------------|-------------|
| C9   | 0.7726 (2)   | 0.42650 (18) | 0.14511 (14)  | 0.0379 (5)  |
| C10  | 0.7207 (2)   | 0.32622 (17) | 0.12503 (14)  | 0.0388 (5)  |
| C11  | 0.6358 (2)   | 0.2590 (2)   | 0.17605 (16)  | 0.0450 (6)  |
| C12  | 0.5585 (3)   | 0.2171 (3)   | 0.3156 (2)    | 0.0770 (10) |
| H12A | 0.5411       | 0.2663       | 0.3633        | 0.092*      |
| H12B | 0.4835       | 0.2051       | 0.2845        | 0.092*      |
| C13  | 0.6041 (3)   | 0.1095 (3)   | 0.3472 (2)    | 0.0955 (12) |
| H13A | 0.6823       | 0.1203       | 0.3731        | 0.143*      |
| H13B | 0.6114       | 0.0576       | 0.3006        | 0.143*      |
| H13C | 0.5486       | 0.0798       | 0.3887        | 0.143*      |
| C14  | 0.7432 (3)   | 0.4921 (2)   | 0.22603 (15)  | 0.0491 (6)  |
| C15  | 1.0562 (2)   | 0.5710(2)    | -0.00892 (18) | 0.0513 (7)  |
| C16  | 1.1471 (3)   | 0.5888 (3)   | -0.0697 (2)   | 0.0690 (8)  |
| H16  | 1.1620       | 0.5345       | -0.1111       | 0.083*      |
| C17  | 1.2143 (3)   | 0.6858 (3)   | -0.0688 (3)   | 0.0866 (11) |
| H17  | 1.2739       | 0.6971       | -0.1099       | 0.104*      |
| C18  | 1.1946 (3)   | 0.7664 (3)   | -0.0077 (3)   | 0.0902 (12) |
| H18  | 1.2402       | 0.8322       | -0.0074       | 0.108*      |
| C20  | 1.0364 (3)   | 0.6516 (2)   | 0.05281 (19)  | 0.0606 (7)  |
| H20  | 0.9767       | 0.6411       | 0.0940        | 0.073*      |
| C19  | 1.1066 (3)   | 0.7487 (3)   | 0.0527 (2)    | 0.0779 (10) |
| H19  | 1.0937       | 0.8028       | 0.0945        | 0.093*      |
| H1A  | 0.897 (2)    | 0.290 (2)    | -0.0361 (11)  | 0.055 (8)*  |
| H3A  | 1.016 (3)    | 0.426 (2)    | -0.0595 (13)  | 0.067 (9)*  |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-----------------|--------------|--------------|--------------|
| Cl1 | 0.0825 (6)  | 0.0701 (5)  | 0.0772 (5)      | 0.0141 (4)   | -0.0005 (4)  | -0.0343 (4)  |
| Cl2 | 0.0660 (5)  | 0.1399 (8)  | 0.0603 (4)      | 0.0033 (5)   | -0.0208 (4)  | 0.0215 (5)   |
| F1  | 0.0622 (10) | 0.0738 (10) | 0.0758 (10)     | 0.0072 (9)   | 0.0117 (9)   | -0.0183 (9)  |
| F2  | 0.0878 (12) | 0.0810 (12) | 0.0503 (9)      | -0.0055 (9)  | -0.0245 (9)  | 0.0008 (8)   |
| F3  | 0.1199 (15) | 0.0432 (9)  | 0.0639 (9)      | -0.0128 (9)  | 0.0036 (10)  | -0.0139 (7)  |
| 01  | 0.0591 (11) | 0.0644 (12) | 0.0704 (12)     | -0.0280 (10) | -0.0031 (10) | -0.0053 (10) |
| O2  | 0.0630 (12) | 0.0649 (11) | 0.0497 (11)     | -0.0154 (10) | 0.0075 (9)   | 0.0041 (9)   |
| N1  | 0.0335 (10) | 0.0393 (11) | 0.0568 (12)     | 0.0029 (9)   | 0.0029 (10)  | -0.0072 (9)  |
| N2  | 0.0418 (11) | 0.0368 (10) | 0.0499 (11)     | -0.0042 (9)  | -0.0017 (10) | 0.0003 (9)   |
| N3  | 0.0450 (12) | 0.0474 (12) | 0.0660 (14)     | -0.0032 (10) | 0.0115 (11)  | 0.0005 (12)  |
| C1  | 0.0404 (13) | 0.0477 (14) | 0.0488 (14)     | -0.0079 (12) | 0.0067 (12)  | -0.0073 (11) |
| C2  | 0.0519 (15) | 0.0739 (19) | 0.0362 (13)     | -0.0195 (14) | 0.0008 (12)  | -0.0049 (13) |
| C3  | 0.0377 (14) | 0.0736 (19) | 0.0462 (14)     | -0.0114 (14) | -0.0033 (12) | 0.0143 (13)  |
| C4  | 0.0422 (15) | 0.0557 (16) | 0.0585 (16)     | 0.0053 (12)  | -0.0050 (13) | 0.0061 (13)  |
| C5  | 0.0419 (14) | 0.0479 (14) | 0.0485 (14)     | 0.0031 (11)  | -0.0052 (12) | -0.0039 (12) |
| C6  | 0.0339 (12) | 0.0358 (11) | 0.0447 (12)     | -0.0077 (10) | -0.0001 (11) | -0.0020 (10) |
| C7  | 0.0387 (13) | 0.0302 (10) | 0.0491 (13)     | -0.0041 (10) | -0.0007 (11) | -0.0026 (9)  |
| C8  | 0.0320 (12) | 0.0362 (12) | 0.0543 (14)     | 0.0048 (10)  | -0.0052 (11) | 0.0048 (11)  |
| C9  | 0.0333 (11) | 0.0379 (12) | 0.0426 (12)     | 0.0021 (10)  | -0.0081 (10) | 0.0012 (10)  |

| C10 | 0.0344 (12) | 0.0368 (12) | 0.0452 (13) | -0.0008 (10) | -0.0050 (11) | 0.0017 (10)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C11 | 0.0398 (13) | 0.0409 (13) | 0.0543 (15) | -0.0029 (12) | -0.0013 (13) | -0.0011 (11) |
| C12 | 0.068 (2)   | 0.088 (2)   | 0.075 (2)   | -0.0070 (18) | 0.0274 (17)  | 0.0051 (18)  |
| C13 | 0.087 (3)   | 0.105 (3)   | 0.094 (3)   | -0.026 (2)   | 0.006 (2)    | 0.039 (2)    |
| C14 | 0.0558 (16) | 0.0458 (13) | 0.0458 (13) | -0.0053 (12) | -0.0067 (13) | -0.0042 (11) |
| C15 | 0.0347 (13) | 0.0478 (15) | 0.0715 (17) | -0.0023 (11) | -0.0003 (12) | 0.0149 (14)  |
| C16 | 0.0518 (17) | 0.0627 (18) | 0.093 (2)   | 0.0006 (15)  | 0.0132 (17)  | 0.0147 (16)  |
| C17 | 0.059 (2)   | 0.074 (2)   | 0.127 (3)   | -0.0135 (19) | 0.013 (2)    | 0.035 (2)    |
| C18 | 0.065 (2)   | 0.062 (2)   | 0.144 (4)   | -0.0248 (17) | -0.014 (2)   | 0.030 (2)    |
| C20 | 0.0530 (17) | 0.0531 (17) | 0.0757 (19) | -0.0118 (14) | -0.0026 (14) | 0.0083 (15)  |
| C19 | 0.073 (2)   | 0.0538 (18) | 0.107 (3)   | -0.0164 (17) | -0.005 (2)   | 0.0039 (18)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cl1—C1     | 1.741 (3)   | С5—Н5         | 0.9300      |
|------------|-------------|---------------|-------------|
| Cl2—C3     | 1.730 (3)   | C6—C7         | 1.522 (3)   |
| F1—C14     | 1.333 (3)   | C7—C10        | 1.508 (3)   |
| F2—C14     | 1.327 (3)   | С7—Н7         | 0.9800      |
| F3—C14     | 1.330 (3)   | C9—C10        | 1.360 (3)   |
| O1—C11     | 1.215 (3)   | C9—C14        | 1.526 (3)   |
| O2—C11     | 1.324 (3)   | C10—C11       | 1.468 (3)   |
| O2—C12     | 1.469 (3)   | C12—C13       | 1.462 (5)   |
| N1—C8      | 1.354 (3)   | C12—H12A      | 0.9700      |
| N1—C7      | 1.462 (3)   | C12—H12B      | 0.9700      |
| N1—H1A     | 0.897 (10)  | С13—Н13А      | 0.9600      |
| N2—C8      | 1.308 (3)   | C13—H13B      | 0.9600      |
| N2—C9      | 1.365 (3)   | C13—H13C      | 0.9600      |
| N3—C8      | 1.355 (3)   | C15—C20       | 1.381 (4)   |
| N3—C15     | 1.408 (3)   | C15—C16       | 1.399 (4)   |
| N3—H3A     | 0.890 (10)  | C16—C17       | 1.371 (4)   |
| C1—C2      | 1.377 (4)   | C16—H16       | 0.9300      |
| C1—C6      | 1.393 (3)   | C17—C18       | 1.373 (5)   |
| C2—C3      | 1.379 (4)   | C17—H17       | 0.9300      |
| С2—Н2      | 0.9300      | C18—C19       | 1.373 (5)   |
| C3—C4      | 1.362 (4)   | C18—H18       | 0.9300      |
| C4—C5      | 1.382 (3)   | C20—C19       | 1.389 (4)   |
| C4—H4      | 0.9300      | C20—H20       | 0.9300      |
| C5—C6      | 1.381 (3)   | С19—Н19       | 0.9300      |
| C11—O2—C12 | 118.6 (2)   | C11—C10—C7    | 114.78 (19) |
| C8—N1—C7   | 119.86 (19) | O1—C11—O2     | 123.1 (2)   |
| C8—N1—H1A  | 117.8 (17)  | O1-C11-C10    | 122.3 (2)   |
| C7—N1—H1A  | 118.4 (17)  | O2-C11-C10    | 114.6 (2)   |
| C8—N2—C9   | 116.66 (19) | C13—C12—O2    | 110.7 (3)   |
| C8—N3—C15  | 130.5 (2)   | C13—C12—H12A  | 109.5       |
| C8—N3—H3A  | 115.5 (19)  | O2—C12—H12A   | 109.5       |
| C15—N3—H3A | 113.9 (19)  | C13—C12—H12B  | 109.5       |
| C2—C1—C6   | 122.5 (2)   | O2—C12—H12B   | 109.5       |
| C2—C1—Cl1  | 118.25 (19) | H12A—C12—H12B | 108.1       |
| C6—C1—Cl1  | 119.21 (19) | C12—C13—H13A  | 109.5       |

| $C_1$ $C_2$ $C_3$    | 119.5(2)     | C12 C12 U12D        | 100 5        |
|----------------------|--------------|---------------------|--------------|
| C1 - C2 - C3         | 118.5 (2)    | С12—С13—Н13В        | 109.5        |
| C1 = C2 = H2         | 120.8        | HI3A-CI3-HI3B       | 109.5        |
| $C_3 = C_2 = H_2$    | 120.8        | C12-C13-H13C        | 109.5        |
| C4 - C3 - C2         | 121.1 (2)    | H13A-C13-H13C       | 109.5        |
| C4 - C3 - C12        | 119.9 (2)    | H13B - C13 - H13C   | 109.5        |
| $C_2 = C_3 = C_{12}$ | 119.0 (2)    | F2 - C14 - F3       | 106.7 (2)    |
| C3_C4_C5             | 119.3 (2)    | F2—C14—F1           | 107.4 (2)    |
| C3—C4—H4             | 120.4        | F3—C14—F1           | 105.8 (2)    |
| C5—C4—H4             | 120.4        | F2—C14—C9           | 112.3 (2)    |
| C6—C5—C4             | 122.2 (2)    | F3—C14—C9           | 110.8 (2)    |
| C6—C5—H5             | 118.9        | F1—C14—C9           | 113.5 (2)    |
| C4—C5—H5             | 118.9        | C20-C15-C16         | 119.1 (3)    |
| C5—C6—C1             | 116.4 (2)    | C20—C15—N3          | 125.2 (2)    |
| C5—C6—C7             | 121.8 (2)    | C16—C15—N3          | 115.6 (3)    |
| C1—C6—C7             | 121.8 (2)    | C17—C16—C15         | 120.4 (3)    |
| N1—C7—C10            | 107.54 (18)  | C17—C16—H16         | 119.8        |
| N1—C7—C6             | 110.87 (18)  | C15-C16-H16         | 119.8        |
| C10—C7—C6            | 113.73 (19)  | C16—C17—C18         | 120.7 (3)    |
| N1—C7—H7             | 108.2        | С16—С17—Н17         | 119.7        |
| С10—С7—Н7            | 108.2        | C18—C17—H17         | 119.7        |
| С6—С7—Н7             | 108.2        | C19—C18—C17         | 119.1 (3)    |
| N2—C8—N1             | 122.8 (2)    | C19-C18-H18         | 120.4        |
| N2—C8—N3             | 121.7 (2)    | C17-C18-H18         | 120.4        |
| N1—C8—N3             | 115.5 (2)    | C15—C20—C19         | 119.3 (3)    |
| C10—C9—N2            | 124.8 (2)    | С15—С20—Н20         | 120.4        |
| C10-C9-C14           | 123.6 (2)    | С19—С20—Н20         | 120.4        |
| N2                   | 111.61 (19)  | C18—C19—C20         | 121.4 (3)    |
| C9—C10—C11           | 128.3 (2)    | С18—С19—Н19         | 119.3        |
| C9—C10—C7            | 116.7 (2)    | С20—С19—Н19         | 119.3        |
| C6—C1—C2—C3          | 1.4 (4)      | N2—C9—C10—C7        | -7.6 (3)     |
| Cl1—C1—C2—C3         | -177.60 (19) | C14—C9—C10—C7       | 169.7 (2)    |
| C1—C2—C3—C4          | -1.9 (4)     | N1-C7-C10-C9        | 30.7 (3)     |
| C1—C2—C3—Cl2         | 177.07 (19)  | C6—C7—C10—C9        | -92.4 (2)    |
| C2—C3—C4—C5          | 1.1 (4)      | N1-C7-C10-C11       | -154.66 (19) |
| Cl2—C3—C4—C5         | -177.8 (2)   | C6—C7—C10—C11       | 82.2 (2)     |
| C3—C4—C5—C6          | 0.2 (4)      | C12-02-C11-O1       | -8.8 (4)     |
| C4—C5—C6—C1          | -0.7 (3)     | C12—O2—C11—C10      | 173.1 (2)    |
| C4—C5—C6—C7          | 177.5 (2)    | C9—C10—C11—O1       | 152.8 (3)    |
| C2—C1—C6—C5          | -0.1 (3)     | C7—C10—C11—O1       | -21.1 (3)    |
| Cl1—C1—C6—C5         | 178.86 (18)  | C9—C10—C11—O2       | -29.1 (3)    |
| C2—C1—C6—C7          | -178.3 (2)   | C7—C10—C11—O2       | 157.0 (2)    |
| Cl1—C1—C6—C7         | 0.6 (3)      | C11—O2—C12—C13      | 97.6 (3)     |
| C8—N1—C7—C10         | -38.3 (3)    | C10-C9-C14-F2       | 82.9 (3)     |
| C8—N1—C7—C6          | 86.6 (2)     | N2—C9—C14—F2        | -99.5 (2)    |
| C5—C6—C7—N1          | -101.8 (3)   | C10—C9—C14—F3       | -158.0 (2)   |
| C1—C6—C7—N1          | 76.4 (3)     | N2—C9—C14—F3        | 19.6 (3)     |
| C5—C6—C7—C10         | 19.5 (3)     | C10—C9—C14—F1       | -39.2 (3)    |
| C1—C6—C7—C10         | -162.3 (2)   | N2—C9—C14—F1        | 138.4 (2)    |
| C9—N2—C8—N1          | 6.0 (3)      | C8 - N3 - C15 - C20 | -3.2 (4)     |
|                      | X- /         |                     | (-)          |

| C9—N2—C8—N3    | -172.5 (2) | C8—N3—C15—C16   | 178.3 (3)  |
|----------------|------------|-----------------|------------|
| C7—N1—C8—N2    | 21.8 (3)   | C20—C15—C16—C17 | -1.0 (4)   |
| C7—N1—C8—N3    | -159.7 (2) | N3—C15—C16—C17  | 177.7 (3)  |
| C15—N3—C8—N2   | 4.9 (4)    | C15—C16—C17—C18 | 0.7 (5)    |
| C15—N3—C8—N1   | -173.7 (2) | C16—C17—C18—C19 | 0.2 (6)    |
| C8—N2—C9—C10   | -12.8 (3)  | C16—C15—C20—C19 | 0.4 (4)    |
| C8—N2—C9—C14   | 169.6 (2)  | N3—C15—C20—C19  | -178.1 (3) |
| N2—C9—C10—C11  | 178.6 (2)  | C17—C18—C19—C20 | -0.7 (5)   |
| C14—C9—C10—C11 | -4.1 (4)   | C15—C20—C19—C18 | 0.4 (5)    |

Hydrogen-bond geometry (Å, °)

| D—H···A                                   | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-------------------------------------------|-------------|--------------|--------------|------------|
| N3—H3A····O1 <sup>i</sup>                 | 0.890 (10)  | 2.026 (12)   | 2.907 (3)    | 170 (3)    |
| N1—H1A····O1 <sup>i</sup>                 | 0.897 (10)  | 2.490 (17)   | 3.267 (3)    | 145 (2)    |
| N1—H1A…Cl1                                | 0.897 (10)  | 2.91 (2)     | 3.350 (2)    | 111.8 (18) |
| Symmetry codes: (i) $x+1/2, -y+1/2, -z$ . |             |              |              |            |





